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ABSTRACT
Deformable interfaces are emerging in HCI and prototypes
show potential for non-rigid interactions. Previous reviews
looked at deformation as a material property of shape-
changing interfaces and concentrated on output. As such,
deformable input was under-discussed. We distinguish de-
formable from shape-changing interfaces to concentrate on
input. We survey 131 papers on deformable interfaces and
review their key design elements (e.g., shape, material) based
on how they support input. Our survey shows that deformable
input was often used to augment or replace rigid input, partic-
ularly on elastic and flexible displays. However, when shapes
and materials guide interactions, deformable input was used
to explore new HCI paradigms, where gestures are potentially
endless, and input become analogy to sculpting, metaphor
to non-verbal communication, and expressive controls are
enhanced. Our review provides designers and practitioners
with a baseline for designing deformable interfaces and input
methodically. We conclude by highlighting under-explored
areas and identify research goals to tackle in future work with
deformable interfaces.
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CCS Concepts
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INTRODUCTION
Research in HCI is shifting focus from rigid to non-rigid
interactions [60, 29], and the use of non-rigid materials for
interactive applications (e.g., music, gaming) is constantly
under investigation [172, 173, 83, 166, 133, 142, 135]. Several
prototypes exist that show potential applications for non-rigid
interactions, including elastic and flexible displays that are
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bendable and stretchable [163, 189, 65, 1, 146, 101, 3, 79, 134,
92, 19], deformable controllers for gaming [122, 156, 102],
jamming user interfaces [62, 42], and deformable interfaces
for music performances [16, 196, 173, 157, 169, 70, 106].

However, the term deformable is often blurred with the term
shape change [83, 166], or used to describe material properties
of shape-changing interfaces [133, 166, 135]. Consequently,
as shape change emphasizes output and self-actuation [135,
136, 4], earlier work exclude deformable interfaces that are
input-only [166] (e.g., BendID [122]), and under-discuss input
[133, 135]. Therefore, we lack overviews of deformable input
and its use for interactive applications. To compensate for that,
we (1) distinguish deformable from shape-changing interfaces
and (2) develop a review of non-rigid interfaces, specifically
deformable interfaces, which is angled towards input.

We define deformable interfaces those that (1) are entirely or
in part made of soft and malleable materials (e.g., rubber), (2)
require physical input to be deformed, and (3) allow users to
input in ways that are unlikely (if not impossible) with rigid in-
terfaces (e.g., bend, stretch [178]). As such, we do not consider
interfaces where users input by re-configuring rigid materials
[75, 126, 34, 44, 57, 140], and that do not allow for direct,
physical input on the interface [100, 99, 182]. We survey the
state-of-the-art in designing deformable interfaces and input
by reviewing 131 papers from various research communities
(e.g., CHI, NIME, DIS, TEI, UIST). We use grounded theory
[48] to analyze the deformable interfaces presented in the 131
papers and identify five elements that form the basis of their
design, namely (1) shape, (2) material, (3) input sensing, (4)
I/O mapping, and (5) use of deformable input.

With the present survey, we aim to generate an extensive
overview of existing deformable interfaces that shows (1) how
such interfaces are designed, (2) what are the basic elements
that constitute their design, and (3) how is deformable input de-
signed and for what interactive applications. For designers and
practitioners, the review represents a baseline from which in-
spire the design of future deformable interfaces and approach
design practices more methodically. For researchers, the re-
view defines deformable interfaces, discusses open research
questions, and provides a list of research goals for future work.

SCOPE AND MOTIVATION
Recently, research on HCI has seen the emergence of various
papers that review non-rigid interfaces from different perspec-
tives, including a survey of the design space and research
challenges of shape-changing interfaces [135, 4], a review of
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shape-changing interfaces for design and application-based
research [166], and reviews of materials and objects that
have shape-changing properties [133, 83]. However, the
aforementioned reviews emphasize the output characteristics
of non-rigid interfaces (e.g., self-actuation), and widely
discuss shape resolution [142, 83], orientation [135], and
actuation [133], while deformable input and its design are
seldom discussed. Furthermore, to reinforce the focus on
output, previous review exclude non-display and input-only
interfaces [166]; for instance, deformable interfaces for music
[109] and gaming [156] are not considered.

We focus on input and include non-display and input-
only interfaces. As such, we integrate previous work by
reviewing deformable input more extensively and show (1)
how deformable interfaces are designed for input, (2) what are
the characteristics of deformable input, (3) how is deformable
input designed for interactive applications, and (4) reflect on
how deformable interfaces and input redefine HCI paradigms.
Additionally, we found that the way researchers described
interfaces as deformable in earlier reviews is ill-defined
and may lead to ambiguous interpretations. For instance,
Sturdee et al. described input with Paddle [134] as allowing
for "user-controlled deformations". However, Paddle uses
rigid surfaces for input, which may be re-configurable [83],
but are not "deformable", for instance as in ShapePhone
[43], where the interface can be physically stretched or bent
because made of malleable material. As such, we felt the need
to disambiguate between the terms deformable and shape
change, and define deformable interfaces as its own sub-field
of non-rigid interfaces.

DEFINING DEFORMABLE INTERFACES
Previous review describe interfaces that can deform and shape
change through the term shape-changing interfaces. However,
they require interfaces to be self-actuated [135, 4], emphasize
output [142, 133, 4], and exclude non-display or input-only
interfaces [166]. We emphasize input and user-controlled
deformation and see deformable interfaces as:

1. Made entirely [132] or in part [38] of soft and malleable
materials, including fabric, rubber, and clay.

2. Emphasizing physical input and user-controlled deforma-
tions over self-actuation and shape change [135],

3. Supporting user input through deformable materials, even
when combining rigid and deformable parts (e.g., [181,
119]), or when actuated (e.g., [68, 85, 143]),

4. Allowing users to input with gestures that are unlikely or
impossible with rigid interfaces (e.g., twist [59], bend [47]).

METHOD
We searched for papers from HCI proceedings (e.g., CHI, TEI,
UIST), music proceedings (e.g., NIME, ICMC), and browsed
several online libraries (e.g., ACM, IEEE, Springer, Elsevier),
to cover the most relevant areas. We filtered our search using
the keywords "deformable", "malleable", "elastic", "flexible",
"bendable" "organic", "shape-changing", "soft tangible" AND
"interface" OR "display", and collected a total of 149 papers.

The complete list of papers included in our review can be
found at www.deformableUI.com. We applied the definition of
deformable interfaces to the collected 149 papers and found
that 18 did not match the criteria. We reviewed the selected 131
papers and analyzed deformable interfaces based on grounded
theory [48], in particular content analysis [164] and affinity di-
agramming [174, 52, 13]. We conducted the analysis verbally
over several meetings, using Excel sheets and Google Docs for
annotating the discussions, and RealTime Board1 for affinity
diagramming. After three months, we reached consensus on
the five elements that form the basis of designing deformable
interfaces: (1) shape, (2) material, (3) input sensing, (4) I/O
mapping, and (5) use of deformable input. Next, we first
describe deformable input and its characteristics. Then, we
outline the first four design elements listed above and show
how they are designed to support deformable input and for
what interactive applications. We conclude by explaining how
deformable input is used to augment and replace earlier HCI
paradigms (i.e., rigid multi-touch input), or explore new ones.

DEFORMABLE INPUT
Interacting with deformable interfaces requires physical ma-
nipulation of shapes and materials. Users can input on de-
formable interfaces by using their hands e.g., [172]) or the
entire body (e.g., [128]). Deformable interfaces add depth to
bi-dimensional touch input (e.g., [172, 24, 189]), allow users
to deform interfaces by means of stretch [180], bend [38],
twist [80], squeeze [178], and combine those to allow for mul-
tidimensional input (i.e., multiple deformations used simulta-
neously for controlling various parameters [59]). Furthermore,
as deformable interfaces are made of soft and malleable ma-
terials, they may afford energetic and aggressive input like
slapping [120] and punching [91].

Hand-Based Deformable Input
Deformable interfaces allow for one- or two-handed input,
with bend, squeeze, stretch, twist, and push being most
common. Bend is used frequently in deformable displays
and controllers [47, 35, 37, 185, 59, 79, 5, 122, 157, 155,
67, 96, 5, 102, 96, 92], and users generally like corner
bend as a gesture [185, 35]. One-handed squeeze is widely
used as input for controllers and music interfaces [51, 12,
191, 192, 173, 45]. Stretch is less common compared
to bend and squeeze, and can be two-handed [180, 194,
139, 16, 203], or one-handed [25, 167, 202]. Twist is the
result of bending with two hands in opposite directions
and can be performed either vertically [87, 118] or hori-
zontally [110, 80, 79, 81]. Push is used often for input on
elastic displays for depth-touch [189, 24, 68, 129, 72, 172, 55].

Other hand-based deformable input include twiddle
[149], punch [91], slap [120], prod [106], roll [124], and shear
[190]. Although becoming common in HCI, previous work
showed that creating a vocabulary for hand-based deformable
input is hard [172], as users still tend to rely on earlier
paradigms based on rigid input (e.g., multi-touch), particularly
when deformable interfaces resemble rigid displays or tasks
are inspired by touch and WIMP interactions.
1https://realtimeboard.com/
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Body-Based Deformable Input
Body-based input for deformable interfaces is uncommon.
However, there are few examples. BendableSound [28] allows
for input with hands but encourages its users to input with
other parts of the body too, such as the head or the arms.
FuwaFuwa [168] and Ballagumi [106] allow for input with
the mouth and the neck. SmartSleeve [128] is a deformable
interface worn on the arm that can be bent for input by flexing
the forearm. Emoballoon [120] can be hugged and squeezed to
the chest for cuddling interactions. However body-based input
with deformable interfaces remains under-explored, because,
at this stage, deformable interfaces are still designed to fit
dominant HCI paradigms [18].

Kinetic Deformable Input
As said above, deformable interfaces can afford aggressive
interactions and input due to their softness and malleability.
For instance, when Emobaloon [120] is slapped it will flash
a red light and interpret the user input as "aggressive". In-
flated Roly Poly [91] lets users punch and poke the display to
blow up bubbles in virtual games. However, as body-based
deformable input, kinetic input with deformable interfaces are
also under-explored.

Multidimensional Deformable Input
Deformable interfaces may allow for multidimensional input,
where each deformable input can be used to control an indi-
vidual output [122]. There are few examples of deformable
interfaces that allow for two simultaneous input. Examples
include twist + touch [80], bend + touch [5, 19, 35, 36], and
stretch + touch [180], which combine rigid and deformable
input. There are also examples where two simultaneous de-
formable inputs are allowed, including bend + twist [80, 158,
157, 59, 156], twist + stretch [25, 16, 195, 77, 53], and bend
+ push [122]. At present, multidimensional input with de-
formable interfaces are being explored. In particular, research
about conductive polymers [49] and nanomaterials [84] shows
promise for deformable input beyond two dimensions [144].
However, sensing more than two deformations simultaneously
remains challenging. Despite technical feasibility, there are
still no research that explore the extent to which users can han-
dle multiple deformations for input, and what are the benefits.

SHAPE
This section presents an overview shapes used with deformable
interfaces (Figure 2). We considered shapes of deformable
interfaces before user manipulation and found two main types
of shape: (1) volumetric and (2) flat. Flat shapes are widely
used for interfaces that act like deformable displays, while
volumetric shapes follow applications and interactions.

Volumetric
Volumetric deformable interfaces are 3D-mensional and 2.D-
dimensional, and can be either geometric (e.g., cube, sphere),
or organic (e.g., zoomorphic, xenomorphic).

Geometric
Geometric deformable interfaces have the shape of geomet-
ric primitives. We identified four types of geometric shapes:
(1) spheroid, (2) cuboid, (3) cylindric, and (4) tetrahedron.

Figure 1: Characteristics of deformable input; © Troiano
& Boem

Spheroid are sphere or hemispherical. Spheres were used to
create deformable interfaces for music [173, 58, 191, 70, 193],
virtual 3D sculpting [159], and soft lamps [179]. Emoballoon
[120] used rubber balloons to create deformable interfaces
that infer user intentions based on the character of deformable
input (e.g., hug-is-friendly). Bacim et al. [7, 6] used hemi-
spherical, elastic displays to investigate multi-touch on curved
surfaces. OrbTouch [93] allowed users to move Tetris pieces
by deforming a soft hemispherical controller. DeformWear
[190] is a soft hemispherical controller that is worn on the
index finger ad controlled via the thumb for navigating maps
or playing video-games on external displays and VR headsets.

Cuboid can be shaped like cubes or rectangles. As spheroid,
they were used as deformable interfaces for music [173, 17,
77, 87] and virtual 3D sculpting [117, 155]. MARSUI [197]
and Soundflex [169] coupled deformation with auditory feed-
back on malleable rectangular interfaces; the user deforms
the interface guided by sounds to put it in specific modes
(e.g., folded around the wrist is "watch" mode). BendID [122]
and TWEND [59] used rectangular soft interfaces to support
multidimensional bend + twist input for gaming and mobile ap-
plications. Kildal et al. investigated bend + twist using similar
prototypes [78, 79]. ShapePhone [43] proposed prototypes of
deformable, shape-retaining smartphones, which are stretched
to morph into TV remote or Wiimote-like controllers.

Cylindric shapes resemble cylinders or tubes. HandLog
[12] used soft cylinders to support squeeze input for gaming.
Watanabe et al. [187] used flexible rubber cylinders to explore
deformable input on rigid mobiles, such as finger-flicking to ig-
nore e-mails, or twisting to scroll emoji menus. SonicBanana
[157] used tube-shaped flexible interfaces as MIDI controllers
that users can bend or twist to perform music. Sculpton [16]
used tetrahedron shapes to create malleable music interfaces
for "sculpting" sounds with the hands.



Figure 2: Types of shapes for deformable interfaces; © Troiano & Boem

Organic
Organic deformable interfaces can be shaped after tools, real
life objects (e.g., plants), or be arbitrary. We found six types
of organic shapes: (1) tools, (2) anthropomorphic, (3) zoomor-
phic, (4) phytomorphic, (5) xenomorphic, and (6) polymorphic.

Deformable interfaces shaped like tools include Inflatable
Mouse [85] and FlexStylus [39], which add deformable input
to computer mice and rigid stylus for WIMP and drawing
applications. Anthropomorphic and zoomorphic deformable
interfaces resemble human and animal shapes. Sato et al. [145]
used transparent rubber on multi-touch tabletops to create a
humanoid face that changes facial expressions when poked
or squeezed. SillyTone [115] is a rabbit-shaped, deformable
interface that plays sounds when its ears are bent or squeezed.
Flexibles [151] are shaped like trees and users can bend and
release them fast to throw fruits at each other in AR games.

Xenomorphic shapes look organic but are unusual and strange.
Examples are Ballagumi [106], Glume [127], and Senspec-
tra [94], which allow for deformable input respectively for
music, creating network platforms for 3D modeling, or sens-
ing mechanical strain. Finally, polymorphic interfaces can be
deformed by users to any desired shape. We found many ex-
ample of clay-based, polymorphic interfaces, which were used
for various applications and domains, including music [188],
real-time model-capturing for AR [138], odor retrieval [73],
gaming [184], and education [14, 199, 150]; input with such
interfaces follow dynamic affordances of highly deformable
materials and gestures become potentially endless.

Flat
Flat deformable interfaces (Figure 2) have a two-dimensional
shape and are either display or controller. Deformable dis-
plays have co-located input and visual output on the very same
surface. Designers of such deformable interfaces often explic-
itly reference existing multi-touch technology as a source of

inspiration (e.g., [129]). Deformable controllers are input-only
interfaces, where input and output are not co-located.

Displays
Deformable displays resemble rigid multi-touch displays
(e.g., touchscreens, smartphones). On deformable displays,
deformable input augments or replaces multi-touch. They
provide visual output, unless used as proof-of-concept
prototypes [96]. Deformable interfaces that resemble displays
often have elastic surfaces, which allow for depth-touch
along with bidimensional multi-touch input [129, 189], and
may support deformable gestures [174]. Examples include
Khronos Projector [24], a pushable display for interactively
explore videos and pictures in four dimensions.

The Deformable Workspace [189] and DepthTouch
[129], are elastic displays for depth multi-touch and 3D
sculpting applications. BendableSound [28] is a wall-sized
elastic display that helps autistic children develop motor
skills through expressive therapies. Troiano et al. [172]
used a guessability method [198] to investigate user-defined
gestures for elastic displays, showing that users input with
deformable gestures mostly when tasks involve manipulating
and displacing 3D objects.

Deformable displays can be shaped after rigid tablets and
smartphones. Bend input was widely used on prototypes of
flexible tables and smartphones [185, 30, 96, 97, 5]. Bendy
[102] and Flexpad [163] used deformable input on flexible
tables for mobile gaming and controlling video-animations.
Flexible smartphones were used to investigate bend input for
various mobile applications [37, 47, 92, 20], including pass-
word creation [108], map navigation and browsing [152, 3,
19, 47, 45, 81], music [50], holographic gaming [51], non-
verbal communication [165], and blind interactions [35, 37].
Moldable displays can be deformed by users to desired shapes
[112], varied in stiffness [125], be wrapped around rigid ob-



jects [101], and can self-actuate to provide haptic feedback
[68]; such displays are flat at their default state (i.e., before
users manipulate them). Tunable Clay [43] and Claytric Sur-
face [146] provide users with variable stiffness displays that
can be deformed and made hard to "lock" the created shapes.
IlluminatingClay [131] and Sandscape [62] allow users to de-
form malleable displays to explore the topography of visually-
augmented physical landscapes; Phoxel-Space [137] proposed
similar displays but for medical applications.

DeforMe [132] and deForm [42] propose gel-based displays
for creative 3D modeling and picture distortion, where users
input with their hands as well as arbitrary objects (e.g., toys),
and fiducial markers [71]. Lepinski and Vertegaal use fabric to
create displays that can conform to the shape of rigid objects
and be visually-augmented for organic-feel, desktop interac-
tions [101]. MudPad [68], Tablehop [143], and Feelex [64] are
displays that are both deformable and shape change to provide
users with haptic feedback via mechanical and fluid actuation.

Controllers
Flat deformable interfaces were proposed as controllers for
various applications. Controllers with flat, elastic surfaces
were proposed for music [123, 173, 25], and sonification-
based data exploration [113]. Trampoline [55] uses elastic
surfaces, which can be pushed from both the front and back
sides, to input in virtual repoussé and chasing applications.
ElaScreen [204] is a pushable touch-pad for depth-navigating
datasets through their graphic visualizations. Elasticcon [88]
uses elastic strings for eyes-free input when browsing content
on interactive glasses or external displays. Flexible strips
like ShapeTape [9], RoCuModel [154], and fStrip [27]. were
used as input interfaces to model NURBS or for non-verbal,
symbol-based communication. PerForm [196] uses flexible
frames as music interfaces, which can be reshaped by users to
play different musical sounds (e.g., tambourine, guitar).

FlexSense [139] uses thin plastic sheets placed on rigid tablets
to augment rigid input with deformable input. Follmer et al.
[43] combined deformable input and haptic feedback with
pneumatically-actuated, transparent flexible controllers for
tactile exploration of pictures and maps. Flexy [177] allows
users to control digital animations via flexible interfaces
loaded with conductive ink. Other deformable controllers
augment rigid interfaces [180, 203, 202] or human body
parts [128, 201], with flexible materials that allow for input.
Examples include PaperNinja [38] and MimicTile [119],
which augment rigid input on smartphones with flexible parts
for bend input. Bentroller [156] combines bend and twist input
with rigid input on a Nintendo®-like deformable game-pad.
Finally, DIRTI [147] and Linetic [90] are controllers made of
sand or fluids, and can be dynamically reshaped by users.

MATERIAL
Various materials were used with deformable interfaces, in-
cluding, fabrics [129], rubbers [145], and composites [169].
We discussed materials based on studies of material science
[22] and haptic perception [95, 89, 10, 32]. We found that
deformable materials could be characterized as: (1) non-shape-
retaining and (2) shape-retaining (Figure 3).

Non-Shape-Retaining
Non-shape-retaining materials reverse to the original shape
when removing external force. Based on elasticity and reverse
speed, they can be: (1) elastic, (2) flexible, or (3) malleable.

Elastic materials are favorable for deformable input like stretch
and push, and will spring back to their original shape fast.
They include fabrics (e.g., cloth [129, 25], elastane [172, 55,
201], yarn [180, 167, 124]), and rubbers (e.g., silicone, [145,
113], latex [120, 7], PVC [91]). Designers of deformable inter-
faces attached thin sheets of fabric or rubber to rigid frames,
and tense them to create elastic surfaces [55, 204, 189, 93,
181, 113, 7], which users can pull, stretch, and push to input
[172]. Khronos Projector [24], The Deformable Workspace
[189], DepthTouch [129], Zstretch [25], SilentDrum [123],
and BendableSound [28], were created in such way. Troiano
et al. [172] showed that users enjoy input on elastane due to
low friction when in contact with the skin, but that it is hard
to grab and pull because slippery. Kingsley showed that input
supported by elastic fabric is more accurate than mid-air, but
surface tension makes it hard to input at the corners [86].

Flexible materials are stiffer than elastic and afford well de-
formable input like bend and twist [59, 173]. Flexible plastic
sheets were used as proof-of-concept prototypes to explore
bend and twist for mobile applications [185, 59, 139, 30, 108,
102, 96, 152, 79, 81, 97, 200]. Gallant et al. [45] used pa-
per prototypes for similar research, while Ernst et al. used
stiff cardboard [36] and flexible silicone [35, 37] to investi-
gate bend input for blind interactions; they showed that users
like corner bend and enjoy the tactile feedback of silicone.
Girouard et al. [47] augmented silicone with above-projection
and investigated one-handed bend, showing how deformable
input can compensate for issues of rigid mobile (e.g., unreach-
able targets and grip re-adjustments). E Ink-based flexible
displays [92, 19], OLED displays attached to plastic boards
[3], and Flexible OLED (FOLED) [50, 20, 33], were used to
create high-quality prototypes of deformable smartphones.

Malleable materials are softer than flexible and support well
squeeze and push. Foam-based interfaces were covered in
fabrics to provide users with smooth tactile experiences [109,
110, 173, 70, 87, 193, 53, 178] and used to explore squeeze
for music interactions [17, 77, 173, 87, 70, 53, 205, 193, 109,
110], making virtual 3D sculpting physical [117, 155, 159],
and explore expressive input for gaming [12, 122, 156]. Sili-
cone, latex, and gels were used for creating malleable music
interfaces [16, 191, 58, 106], while fluid metals or gels cov-
ered in fabric or thin film, were used as malleable displays and
widgets [90, 103, 68, 42]. SmartSleeve and FabricKeyboard
use fabric to create soft surfaces for deformable input on the
forearm [128], or MIDI keyboards that can be stretched and
pulled for playing music [195].

Shape-Retaining
Shape-retaining materials are capable of maintaining user-
created shapes when external force is removed. Also, they can
vary in stiffness to physically match digital contents [125], or
create intersections between rigid and deformable interactions
[146]. Shape-retaining materials can achieve shape-retention
either (1) naturally, (2) mechanically, or (3) computationally.



Figure 3: Deformable materials; © Troiano & Boem

Clay and paper are naturally shape-retaining; such materials
may bring deformable input beyond gestures to enhance
interactions that follow material properties. Squishy Circuits
[150] were used to introduce kids to electronics through
creative play with conductive dough. PIPLEX [14] allows
kids to control virtual characters and manipulate objects in
AR educational games using plasticine. ClayTone [188]
allows users to create "sound sculptures" using clay. Reed
[138] proposes digitally augmented clay, which shape can be
tracked and computationally reconstructed as users deform it.
DeForMe [132] and Phoxel-Space [137] use clay to create
deformable displays that allow users to physically deform
digital contents. Clayodor [73] lets users deform clay into
fruit shapes (e.g., a banana) to retrieve odors.

Apart from clay, Projectagami [170] uses paper to demonstrate
deformable displays that can be shaped after applications,
such as flat for map navigation or folded for online shopping.
Sandscape [62] and DIRTI [147] use several small glass beads
to create deformable interfaces that retain shapes through spa-
tial conformation [135, 174]. Soft materials can mechanically
retain shape when combined with stiffer ones. Iron wires
embedded into silicone, foam, and plastic allow deformable
interfaces like MARSUI [197], SoundFlex [169], Flexpad
[163], and fStrip [27] to retain shapes while remaining flexible.
In Illuminating Clay [131], iron wires and clay were combined
to create deformable displays that allow for both natural
and mechanical shape-retain. Mechanically shape-retaining
materials seem to be favorable for accurate and gesture-based
deformable input. Computationally shape-retaining materials
can vary stiffness through computer-controlled mechanisms.
Claytric Surface [146], Tunable Clay, and ShapePhone [43],
use particle jamming to create deformable, shape-retaining
interfaces, where soft particles (e.g., coffee grounds), covered
in fabrics or thin sheets of latex, vary stiffness through
computer-controlled solenoid valves. jamSheets [125] uses

air suction for layer jamming and variable stiffness without
using jamming particles. Volflex uses computer-controlled
air cylinders [65] for shape-retaining. MimicTile [119] uses
shape-memory alloys (SMA) for variable stiffness edge input
on smartphones.

INPUT SENSING
Sensors make deformable materials interactive and allow input
to be recognized through sensing techniques. Choices of sen-
sors and sensing techniques are based on (1) the deformable
input that needs to be sensed, (2) physical characteristics of
interfaces (e.g., shape, size, deformability), and (3) interactive
applications. We reviewed sensing for deformable interfaces
based on the categorization of non-perceptual input proposed
by Karam and Schraefel [74], and found two main approaches
to sensing: (1) embedded sensing and (2) external sensing.

Embedded Sensing
Embedded sensing relies on sensors that are embedded in
deformable materials. The majority of deformable interfaces
included in our review used low-cost, commercially available
sensors for embedded sensing. Low-cost flex sensors [67, 59,
152, 200, 92, 185, 102, 157, 205, 70, 197, 173, 87, 50, 35, 5,
51, 125, 38, 19, 108, 47, 171, 30, 196], and strain gauges [9,
79, 25, 81, 20, 27, 3, 82], were used to sense bend and twist,
while force sensitive resistors (FSR) were used for press and
squeeze [70, 109, 67, 200, 115, 58, 193, 191, 5, 125, 73]. For
sensing stretch, Troiano et al. [173] and Chang et al. [25]
used conductive rubber chords embedded in elastic fabrics,
while others woven conductive thread into fabrics or paper,
which approach can be used to sense stretch and bend on both
flat [128, 180, 8] and volumetric surfaces [53, 191].

Designers of deformable interfaces strategically placed
sensors in specific configurations for unobtrusiveness, sensing
input in multiple areas, or enable gesture-based input. Flex
sensors and conductive tapes [169, 197] were placed inside
[173, 157] or on the back [205, 156, 185, 30, 108] of
prototypical deformable interfaces to hide sensors from
users. MARSUI [197] places conductive tape inside silicone
to create sensors layout that sense bend independently in
multiple areas (e.g., at center and corners). Masqood et al.
[108] strategically placed flex sensors only at the corners
of a silicone smartphone prototype to sense corner bend.
The aforementioned examples show how designers can
take advantage of commercial sensors to sense deformable
input. However, embedding low-cost, commercial sensors in
deformable materials presents limitations. First, they wear
out fast and may require creative escamotage to be fit to
custom shapes (e.g., [157]). Second, depending on sensors’
size and thickness, the stiffness and weight of materials
may increase, thus affecting interface robustness and control
experience. Hence, designers explored alternatives to increase
robustness and resistance of deformable interfaces. For
instance, fiber optics and photo-reflective sensors were used
instead of flex sensors to sense bend and twist [9, 39, 154,
26, 16], but also for stretch and squeeze [17, 190, 167, 168,
16]. I/O Braid [124] used a combination of fiber-optics and
conductive yarn to sense several gestures, such as pinch, roll,



and grab. Trampoline [55] used a combination of magnets
and hall-effect sensors to allow for deformable input on
elastic fabric, without burdening the very input surface.
Others used conductive materials, including conductive fabric
[195], conductive foam [117, 159, 12, 121, 121], conductive
3D-printed materials [151], conductive dough [150, 199],
electro-active polymers (EAP) [122], and conductive ink
[177]. Particularly interesting are sensing approaches that
use conductive materials stacked in layers to sense multiple
deformations. BendID [122] used a grid made of nine EAPs
sandwiched between two layers of conductive foam covered in
conductive fabric, to sense bend and squeeze simultaneously
and at different locations. FabricKeyboard [195] used layers
of interwoven conductive fabrics to sense touch and stretch
as input for controlling sounds. In MultiSoft [203] and iSoft
[202], Yoon et al. explored Electrical Impedance Tomography
(EIT) as a technique to create elastic surfaces, that can
discriminate between different inputs, including multi-touch
and stretch.

External Sensing
External sensing relies on sensors that are placed outside de-
formable interfaces. The deformable interfaces included in our
review use external sensing based on computer vision (e.g.,
blob detection) via image sensors (e.g., CCD). External sens-
ing tends to emphasize how a shape or a surface is deformed,
rather than sensing specific gestures (e.g., [163]). Compared
to embedded sensing, external sensing has the advantage of
not burdening deformable materials and may offer better sens-
ing resolution. However, with external sensing deformable
interfaces are bound to the capture areas of image sensors (e.g.,
[163]). Also, the approach can be economically and compu-
tationally expensive, it may require specific light conditions
(e.g., darkness), and portability can be an issue.

Single charge-couple device (CCD) sensors were widely used
for sensing deformable input [181, 113, 188, 123, 31, 155,
45, 189, 184, 72, 145, 137, 101, 24], but stereoscopic CCD
sensors were used too [101]. Cassinelli et al. developed a
custom image sensors that combines CCD and infra-red (IR)
to sense depth input on elastic displays [24]. IR sensors alone
were used to detect input on deformable displays [43, 7, 6, 189,
132, 137, 21, 42, 62]. A combination of invisible markers and
IR sensors was used to interpret and sense shape deformation
on deformable displays like DeForMe [132] and Information-
Sense [21]; similar results were obtained using polarized filters
[145], and extraction of features like the contour of interfaces’
shape [188, 184, 123], or their color [188, 184, 31]. Recently,
the use of depth sensors like the Microsoft Kinect® has slowly
replaced IR technology for sensing deformable input [162,
28, 170, 21]. Also, depth sensors can capture deformations in
high-detail and do not require added markers for surface track-
ing or for reconstructing the geometry of shapes deformed by
users [163, 21]. Finally, hybrid embedded/external approaches
to sensing are also possible. jamSheets [125] combined image
sensors with flex sensors for enabling deformable input and
adapting projected visual contents to user-deformed surfaces
in real-time. Through algorithmic interpretation and filtering
of sensors’ signals, gesture-based interactions via deformable
input are possible.

Figure 4: Two examples of input sensing: (a) Bendtroller
[156], sensing input through embedded flex sensors; (b)
SilentDrum [123], sensing input via CCD sensor; ©

Troiano & Boem

Recognition and Classification of Deformable Gestures
Deformable input inherently involves performing gestures
(e.g., squeeze), but not all deformable interfaces are designed
with gestures in mind (e.g., [24]). Previous work designed
deformable input based either on sensors’ characteristics, or
on how shapes and materials deform and used those deforma-
tions to infer gestures (e.g., [43, 62, 188]). Here we report
recognition and classification techniques used to design ges-
ture interactions with deformable interfaces. There are two
main approaches to gesture recognition and classification: (1)
feature-extraction and (2) machine learning.

Feature extraction approaches gesture recognition by relying
on individual sensors for individual gestures (e.g., flex sensor
–> bend [173]), on individual sensors to extract multiple
features (e.g., magnitude and direction [20, 3]), or by placing
sensors in particular configurations to extract features from
combined sensors values (e.g., [156]). Warren et al. [185]
extract location, direction, size, angle, speed, and duration
of bend using six flex sensors and signal thresholding. Daliri
et al. [30] use similar approaches to recognize 12 bend
gestures (e.g., up, down, left, right). Shorey et al. [156] use
two flex sensors arranged in a cross-like pattern and rec-
ognize bend and twist by thresholding combined sensor values.

Zadel et al. [205] recognize up-down bend by measur-
ing positive and negative curvature of four pairs of flex
sensors. Marier uses two three-axis accelerometers to
recognize bend and twist by differentiating their pitch and roll
[109, 110], while Boem uses six optical sensors and recognize
stretch and bend by thresholding the combined sensor values
[16]. In sum, feature-extraction is convenient when sensors’
signal need simple filtering and gestures can be recognized
straightforwardly.

However, contingent on design choices and needs, recognizing
and classifying gestures based on deformable input may be
challenging. In such cases, previous work used pattern recog-
nition and machine learning. PaperPhone [92] used k-Nearest
Neighbour (k-NN) to recognize and classify bend gestures
based on features like orthogonality, consistency, polymor-
phism, and directionality of bend. BendID [122] and MultiSoft
[203] used support vector machines (SVM) to classify and
discriminate between deformable gestures (e.g., the direction
of bend, position, and intensity of push).



Emoballoon [120] used SVM to measure intensity and charac-
ter of deformable input, and based on rapidity and strength of
kinetic input interpret users’ intentions (e.g., gentle-squeeze-
is-friendly, violent-rapid-push-is-aggressive). The Skweezee
System [178] could recognize up to seven user-defined ges-
tures on soft cubes and cylinders via SVM. Smart Sleeve
[128] used SVM to recognize and classify several deformable
gestures performed by users on smart fabrics placed on the
forearm. Besides SVM, Artificial neural network (ANN) was
also used to recognize and classify gestures with deformable
interfaces [149, 169]. For instance, Larson et al. [93] used
convolutional neural networks (CNN) to predict deformable
gestures, by extracting spatiotemporal features from recorded
user input on deformable surfaces.

I/O MAPPING
One characteristic of deformable interfaces is the capacity of
being both generic and specific [173]. This is contingent on
how deformable input is mapped to the output and for what
applications. Thus, mapping strategies vary heterogeneously,
as deformable interfaces can fit a wide variety of applications.
However, they are seldom documented. We review I/O map-
ping with deformable interfaces following earlier work on
digital music instruments (DMIs), which has a long tradition
on systematic investigations of mapping [107, 69, 114]. We
found that deformable input was mapped to output based on
either (1) explicit mapping or (2) implicit mapping.

With explicit mapping, the input corresponds directly to the
output. For instance, in ClayStation [184] and Flexpad [163],
the shapes of deformable interfaces are equal to their digital
counterparts, and the effects of deformable input are directly
matched by and visible in the output. As such, explicit map-
ping can be used to create physical consistency between the
deformable interface and the contents that they manipulate.
This is favorable for virtual 3D sculpting and modeling applica-
tions [117, 155, 9, 154, 55]. Explicit mapping with deformable
music interfaces is harder, as sounds are abstract and their rela-
tionships to deformable input requires analogies [109, 110, 16,
123, 157]. However, previous work showed that musicians find
squeeze and stretch related to volume and pitch [173]. Interest-
ingly, the study shows that for musicians, stretching an elastic
surface is directly related to "stretching" the pitch of sounds
(e.g., [25]), while expanding volume loudness is inversely
related to squeezing a malleable interface [173]. However, ex-
plicit relationship between input and output with deformable
interfaces should be further investigated.

With implicit mapping the correspondence between input and
output is based on analogies and metaphors. Differently from
explicit mapping, the input is not physically consistent with
the output (e.g., input shape = output shape [9, 163]), but rather
mapped to functionality and actions that are represented by
deformations. For instance, the up/down direction of bend was
mapped to zooming on maps [5, 45, 152], items selection [152,
98], and mobile locking [5]. Implicit mapping was used to cre-
ate analogies between bend and twist and the speed of objects
in video games [122, 156], between twist and audio effects
(e.g., distortion) in music [173], and between squeeze and
speed of zooming [85, 45, 19]. Stretch was mapped to control

Figure 5: Deformable I/O mapping. (a) explicit - physical
manipulation corresponds to its digital counterpart [117];
(b) implicit - deformable input is analogy to sound [173];
© Troiano & Boem

time-based events, such as the playback speed of videos [31]
and sampled sounds [188, 25]. In Khronos Projector [24] the
simple action of pushing into a deformable display becomes
metaphor to exploring the fourth dimension of videos and
pictures. Often, deformable interfaces using implicit mapping
regarded control as expressive [58, 110, 173].

Although implicit mapping shows interesting possibilities for
deformable input that are based on the use of metaphors and
analogies, examples are still sparse and we need a more sys-
tematic understanding of I/O relations. A better understanding
of I/O relations may help better design the use of deformable
input for interactive applications. Next, we show how de-
formable input was used for interactive applications, and retro-
spectively analyze how it moves HCI from earlier paradigms
to newer forms of input interaction.

USE OF DEFORMABLE INPUT
We see three uses of deformable input, which move gradu-
ally from hybrid rigid/non-rigid, to fully non-rigid interactive
applications and paradigms: (1) deformable input augments
rigid input, (2) deformable input replaces rigid input, and (3)
deformable input follows shapes and materials.

Deformable Input Augments Rigid Input
Deformable input was used to augment rigid input in different
ways, for instance by combining flexible parts with rigid ones
[180, 85, 187, 39, 38, 119], or by using rigid input (e.g.,
multi-touch) on deformable interfaces (e.g., [129]). Examples
include Cobra [200] and Behind-the-Tablet Jamming [43],
where rigid multi-touch tablets allow for flexible input on the
back, or FlexStylus [39] where users control the size of digital
brushes in drawing applications by bending the flexible parts
of rigid stylus.

Others implemented multi-touch gestures on elastic displays
[129, 189, 6, 7], such as rotating digital objects with two fin-
gers [189]. The aforementioned examples explored how rigid
and deformable input can coexist on the same interface, and
be either (1) assigned to different functionality for integrated
control performances (e.g., [39, 85]), or (2) create interactive
flows where users can dynamically transition from rigid to
deformable input (e.g., [189, 129]).

Deformable Input Replaces Rigid Input
Deformable input replaced rigid input particularly in mobile
applications [47], where interfaces tend to maintain the same
physical characteristics of their rigid counterparts [20, 3], and



rigid input is technically still possible [152]. In most cases,
rigid input was replaced using bend [3, 82], for navigating
and zooming on maps [152, 45, 19, 20], but also as alterna-
tive input to touch-based pattern-lock authentication [108].
Burstyn et al. [20] showed that one-dimensional bend input
is promising for interacting on flexible mobiles, as it highly
correlates with Fitt’s law [41], and may help improve control
accuracy on mobiles. Beyond GUI-based interactions, Ernst et
al. [35] showed how deformable input makes mobile technol-
ogy accessible to visually impaired users. Overall, interfaces
that replace rigid with deformable input tend towards new
interactive paradigms, but are not yet untied from earlier ones.

Deformable Input Follows Shapes and Materials
Here, deformable input is used to explore new interactive
paradigms that are untied from rigid interactions and interfaces.
Even when used as input for WIMP applications, squeezable
foam was used in place of mouse and keyboard for 3D sculpt-
ing in CAD applications [117]. Furthermore, mobile interac-
tion is not the focus and the range of applications is wide (e.g.,
music [173, 191, 16, 157, 195, 113, 17], virtual 3D sculpt-
ing [155, 55, 181, 183], gaming [122], animation [12], data
exploration [147, 204, 113]).

We noticed that deformable input here was used for two pur-
poses: (1) functional, where deformations support functional
aims, such as bending displays for privacy [125] or deform
interfaces to match applications [43, 197, 170], and (2) expres-
sive, where deformations enhance creative practices [173, 16,
109, 110, 193, 53, 25, 123], or promote new ways of manipu-
lating and exploring digital contents [24, 62, 21, 204, 55, 28,
93, 162, 177, 154, 12, 184]. In both cases, individual gestures
may be used, but become potentially endless as interactions
are guided by shapes and materials. Hence, we found that
deformable input can be gesture-based, but also shape-based
or material-based.

Deformable input can follow shapes, when these become phys-
ical counterparts to the digital contents that they manipulate –
much like Tangible User Interfaces (TUIs [63, 153, 176]). For
instance, when used for virtual 3D sculpting [116], deformable
interfaces allow users to physically deform the shape of digital
mesh [117, 118, 159], or NURBS [9, 154]. In Flexpad [163],
the dynamic deformation of flexible tablets is mapped to the
movement of video-animations in real-time, while Clayodor
[73] changes odor based how users shape the clay (e.g., a
banana-like shape will smell accordingly).

However, unlike TUIs, deformable interfaces can be both
generic and specific [173], depending on how I/O is mapped
[125], and because their shapes can be dynamically modified
to match contents and applications (e.g., [170, 43, 125, 197]).
In that respect, they are also similar to shape-changing inter-
faces [135], but the way they change shape is based on user
manipulation, rather than automated self-actuation.

Depending on material properties, deformable interfaces can
be partially (e.g.,[197]), or radically deformed (e.g., [138]), to
the point where the modified shapes have nothing in common
with the initial ones [150, 188]. Examples are clay-based in-
terfaces [138, 173, 188, 184, 150, 199, 31], where deformable

Figure 6: The way in which deformable input is used in
relation to earlier HCI paradigms or to explore new ones;
© Troiano & Boem

input follows the physical response and the dynamic affor-
dances of the material, rather than specific gestures. As such,
deformable interfaces like Illuminating Clay [62] and Digital
Clay [138] promote interactions that are closer to sculpting
compared, for instance, to bendable displays. With variable
stiffness, deformable input follows dynamic materials that
shift from soft to stiff and vice versa. In Claytric Surface
[146], users can sculpt physical shapes on deformable displays
when soft, and paint on the created shapes using touch input
as the display goes stiff; here deformable interfaces express
interesting potential for HCI, by bringing together qualities
of tangible and shape-changing interfaces. However, further
research is needed to fully exploit the potential of shape- and
material-based deformable input.

DISCUSSION
We surveyed deformable interfaces, reviewed elements that
form the basis of their design (i.e., shape, material), how
they support deformable input, and how is deformable input
used for interactive applications. We concentrated on input to
integrate earlier reviews that focused more on output [135, 166,
142, 83, 133]. As such, we provided an extensive overview of
design practices and solutions for non-rigid input, which were
yet under-discussed. The review will be useful to designers and
practitioners that wish to better understand non-rigid input and
systematically approach its design. Furthermore, we identify
under-explored research areas and propose research goals for
future work with deformable interfaces and input.

Designing Deformable Interfaces and Input
We surveyed elements that form the basis of designing de-
formable interfaces and input. Regarding shape, if not de-
signed after displays, their use is sparse and tied to design-
ers’ choices. Similarly, choices of deformable materials vary



greatly across interfaces and design practices are still experi-
mental. We need studies that more systematically investigate
how and which deformable input can be best supported by
specific combinations of shapes and materials, and for which
interactive applications. Integrating notions of psychophysics
[46] and material perception [161, 11, 32] in future work may
help advance knowledge in this area.

We showed how materials that shape-retain and vary stiff-
ness allow deformable input to follow dynamic affordances.
However, while dynamic affordances were investigated with
shape change for output [174], they are yet unexplored with
deformable interfaces; we would like to see similar studies
that investigate dynamic affordances with deformable input.
We see how deformable interfaces may enhance kinetic in-
put, both gentle and aggressive [173], to express intentions
[120], transmit energy in performative acts [16, 205, 109],
or convey meaning through shape and movement [165, 120,
27, 177, 163]. Kinetic input with deformable interfaces rep-
resents a great opportunity for designing new HCI paradigms
(e.g., punchable interfaces [91, 120], and should be further
investigated.

We provided a thorough analysis of sensors and sensing tech-
niques for deformable input and their implementation, which
was briefly touched upon by previous review, and for dis-
plays only [166]. Furthermore, we analyzed and discussed
mapping, which is key for understanding I/O relations with
deformable interfaces, and how those relations determine (or
are determined by) interaction design. Previous reviews did
not discuss I/O mapping and we see great potential for future
research in this area with deformable interfaces. For instance,
deformable interfaces allow users to "touch" sounds. Further
investigations of I/O relations with deformable interfaces may
help make such analogies consistent between different sensory
perceptions. We suggest that future work look at cross-modal
correspondence [175, 160] and DMIs [23, 61, 40] to systemat-
ically investigate I/O relations with deformable interfaces.

Research Goals for Deformable Interfaces
There are research areas within deformable interfaces that
remain under-explored. For instance, we have user-defined
models of deformable interactions that wait to be implemented
[178, 172], with yet little progress in that direction. Future
work should further exploit such user-defined models and find
suitable applications to those.

Deformable interfaces have shown promise for applications
in expressive therapies, for instance through the use of de-
formable displays that act like music interfaces, and help autis-
tic children in engaging in social interactions [105, 28]. How-
ever, the use of deformable interfaces for expressive therapy
remains mostly unexplored. Deformable input has shown to
support eyes-free interaction through haptic feedback provided
by shapes and materials [190, 128, 173, 88, 53, 37, 98, 201,
124] which we encourage to further investigate.

We know that technology may allow sensing beyond two si-
multaneous deformations [144], but we still do not know: (1)
what is the maximum number of deformations that users can
control simultaneously? (2) how do users perceive individual

deformations when they blur into one another? (3) what tasks
are good fit to multidimensional deformable input and why?
We suggest looking at studies of psychophysics to investigate
perception of multidimensional deformable input [46], and
integrality of input for finding fitting tasks [66].

Deformable input was often regarded as potentially more ex-
pressive compared to rigid input [102, 156, 26, 173]. However,
since control expressiveness may be relative to tasks and how
refined the I/O mapping is, one may argue that rigid interfaces
can be used expressively too [111]. At present, we do not know
how (and if) the above claims are true (i.e., deformable more
expressive than rigid), but we do encourage more comparative
studies (e.g., [104]) that investigate rigid vs deformable input.

We are witnessing the emergence of bendable and foldable
displays in the industry [76, 141, 130, 56, 2, 148, 186], but
reducing deformable interfaces to "flexible displays" only may
be risky. For instance, our review shows that deformable in-
terfaces are more than just "bendable", and they move HCI
paradigms to yet under-explored territories when deformable
input follows shapes and materials (e.g.,[109, 16, 173]). How-
ever, while research on displays and GUI is well-grounded
in HCI, interfaces that are not display remain in the realm
of highly experimental work, and answering the question
"what is a deformable interface interface really useful for?"
remains hard [173]. For instance, what is the "killer app"
for deformable interfaces and who could benefit from using
existing interfaces (e.g., Illuminating Clay [131])? To answer
those questions, we need to ground existing prototypes (e.g.,
deformable interfaces for 3D sculpting [117] and music [16])
in real-life, and let professionals use them and give feedback.

As such, we encourage studies based on participatory design
(PD) [15], which directly involve users and stakeholders by
grounding the design of deformable interfaces in their needs,
as well as in-the-wild studies [54], to obtain spontaneous re-
actions from users that are unlikely in lab-controlled studies.
Furthermore, we need longitudinal studies [173], that observe
how users learn to master deformable input over time. Finally,
we encourage future reviews to include deformable interfaces
from other interdisciplinary fields and potentially relevant
sources, such as interactive arts and design.

CONCLUSION
We reviewed deformable interfaces and input based on 131
papers. We outlined their main design characteristics, dis-
cussed use of deformable input, and identified under-explored
research areas. We hope that our work will contribute a pro-
ductive discussions among designers and researchers that wish
to further investigate deformable interfaces and non-rigid HCI.
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